Section 3.8 Derivative of the inverse function and logarithms 3 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

- Inverse Functions (1 lecture).
- 2 Logarithms.
- Oerivative of the inverse function (1 lecture).
- Logarithmic differentiation (1 lecture).

1 - Inverse functions (pre-calculus)

Definition

Let f be a function. The **inverse** function, denoted by f^{-1} of f is a *new* function such that

$$\underbrace{f}(\underbrace{f^{-1}}_{-1}(x)) = x \text{ and } \underbrace{f^{-1}}_{-1}(\underbrace{f}(x)) = x$$

outer inner

outer inner

(The function and its inverse cancel each other).

(a) Let f(x) = x + 5, then $f^{-1}(x) = x - 5$ (we will see how to find the inverse shortly). Then

•
$$f(f^{-1}(x)) = f(x-5) = x-5+5 = x$$
.

•
$$f^{-1}(f(x)) = f^{-1}(x+5) = x+5-5 = x$$
.

(b) Let
$$f(x) = x^2 (x \ge 0)$$
, then $f^{-1}(x) = \sqrt{x}$ because:
• $f(f^{-1}(x)) = f(\sqrt{x}) = (\sqrt{2})^2 = x$.
• $f^{-1}(f(x)) = f^{-1}(x^2) = \sqrt{x^2} = |x| = x$.

Question: has every function an inverse? How to tell when a function has an inverse?

Answer: No, we use the **horizontal line test** if we have the graph of the function.

To find the inverse function

To find the inverse function

Algebraically

Geometrically

Step 1: Write
$$y = f(x)$$
.

Step 2: Switch x and y to get x = f(y).

Step 3: Solve for y, i.e., isolate y alone to get $y = f^{-1}(x)$.

Step 1: Reflect the graph of y = f(x) on the *x*-axis.

Step 2: rotate the resulting graph by 90° counterclockwise to get the graph of $f^{-1}(x)$.

Find the inverse of g(x) = 5x - 3.

Solution:

Step 1: Write $y = g(x) \rightarrow y = 5x - 3$. Step 2: Exchange x and y in step $1 \rightarrow x = 5y - 3$. Step 3: Solve the equation in step 1 for y

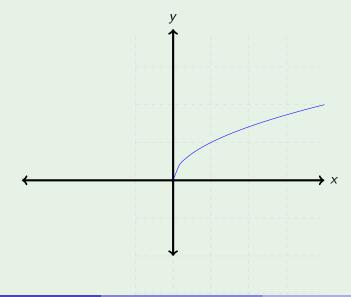
$$x = 5y - 3$$
$$x + 3 = 5y$$
$$\frac{x + 3}{5} = y$$

Hence we have

$$g^{-1}(x) = \frac{x+3}{5}$$

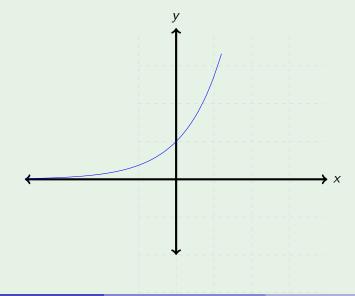
Exercise

Find the inverse function of

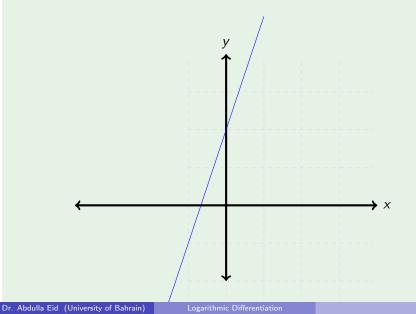

•
$$f(x) = 3x + 2$$
.

2
$$f(x) = x^2 - 1(x > 0)$$
.

$$f(x) = \frac{1}{x}.$$


$$\bullet f(x) = \sqrt{x}.$$

Find the graph of the inverse function of the following functions:


Dr. Abdulla Eid (University of Bahrain)

Find the graph of the inverse function of the following functions:

Dr. Abdulla Eid (University of Bahrain)

Find the graph of the inverse function of the following functions:

10 / 1

Inverse Trigonometric Functions

Example

Let $y = f(x) = \sin x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and we write it as

$$f^{-1}(x) = \sin^{-1} x = \arcsin x.$$

Domain of sin⁻¹ is [-1, 1].
 Range of sin⁻¹ is [
$$\frac{-\pi}{2}$$
, $\frac{\pi}{2}$].

Inverse Trigonometric Functions

Example

Let $y = f(x) = \cos x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in [0, \pi]$ and we write it as

$$f^{-1}(x) = \cos^{-1} x = \arccos x.$$

Inverse Trigonometric Functions

Example

Let $y = f(x) = \tan x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and we write it as

$$f^{-1}(x) = \tan^{-1} x = \arctan x.$$

Domain of tan⁻¹ is [-∞, ∞.
Range of tan⁻¹ is [
$$\frac{-\pi}{2}$$
, $\frac{\pi}{2}$].

Exercise

Find the domain, range, and the graph of inverse of the following functions:

Dr. Apquilis