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Section 4.1
Relative Extrema

3 Lectures

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I
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Application of Differentiation

One of the most important applications of differential calculus are the
optimization problems, i.e., finding the optimal (best) way to do
something.In our case, these optimization problem are reduced to find the
minimum or maximum of a function.

Example

1 Find the length that maximizes the area.

2 Find the radius that minimize the perimeter of certain circle.
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1 - Monotone Functions

Increasing Function

Geometry
Algebra

If a ≤ b, then f (a) ≤ f (b)

Exercise

Write a similar definition for decreasing function.

Definition

A monotone function is either an increasing or decreasing function.
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Answer: One way is to use the definition above, which is hard to do in
general. The other way is to use Calculus as follows:

If f ′(x) ≥ 0, then f (x) is increasing.

If f ′(x) ≤ 0, then f (x) is decreasing.
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2 - Absolute Extrema

Absolute Maximum (Global Maximum)

Geometry

Algebra

f (c) is an absolute maximum
(global maximum) if

f (x) ≤ f (c), for all x

f (c) is the absolute maximum (only one).
c is called absolute maximizer

Exercise

Write a similar definition for absolute minimum.

Definition

An absolute extrema is either an absolute maximum or absolute minimum
function.
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3 - Relative Extrema

Relative Maximum (Local Maximum)

Geometry

Algebra

f (c) is an local maximum (relative
maximum) if

f (x) ≤ f (c), for some value of x near c

f (c) is the local maximum (maybe more than one).

c is called local maximizer

Exercise

Write a similar definition for local minimum.

Definition

An local extrema (relative extrema is either an local maximum or loca
minimum function.
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Example

Let f (x) = sin x , then

It has a global minimum at (−π
2 ,−1), ( 3π

2 ,−1), . . . , ( 3π
2 + 2nπ,−1).

It has a global maximum at (−3π
2 , 1), (π

2 , 1), . . . , (π
2 + 2nπ, 1).

Example

Let f (x) = x2, then

It has a global minimum at (0,0).

It has no global maximum.

Example

Let f (x) = ex , then

It has no global minimum.

It has no global maximum.
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Critical Points

Question: How to find the extrema (local min, local max, absolute min,
absolute max)?
Answer: The following are the candidates for the extrma.

Definition

A number c is called a critical point of f (x) if either

f ′(c) = 0 or f ′(c) does not exist

Note: These critical points are the candidates for local maximum or local
minimum.
To find these points, write the derivative as rational function, i.e.,
f ′(x) = numerator

denominator and then we have

1 f ′(x) = 0→ numerator = 0.

2 f ′(x) = does not exist→ denominator = 0.
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Example

Find the critical points of the following function

f (x) = x3 + x2 − x

Solution:
We find the derivative first which is

f ′(x) = 3x2 + 2x − 1

To find the critical points, we find where the derivative equal to zero or
does not exist.

f ′(x) = 0

numerator = 0

3x2 + 2x − 1 = 0

x = −1 or x =
1

3

f ′(x) does not exist

denominator = 0

1 = 0

Always False

No Solution
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Example

Find the critical points of the following function

f (x) =
√

3 sin x + cos x

Solution:
We find the derivative first which is

f ′(x) =
√

3 cos x − sin x

We find where the derivative equal to zero or does not exist.

f ′(x) = 0

numerator = 0
√

3 cos x − sin x = 0
√

3 cos x = sin x
√

3 = tan x → x = tan−1
√

3

x =
π

3
+ 2nπ or x =

4π

3
+ 2nπ

f ′(x) does not exist

denominator = 0

1 = 0

Always False

No Solution
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Example

Find the critical points of the following function

f (x) =
√

1− x2

Solution:
We find the derivative first which is

f ′(x) =
−2x

2
√

1− x2

To find the critical points, we find where the derivative equal to zero or
does not exist.

f ′(x) = 0

numerator = 0

− 2x = 0

x = 0

f ′(x) does not exist

denominator = 0

1− x2 = 0

x = 1 or x = −1
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Example

Find the critical points of the following function

f (x) =
x − 1

x2 − x + 1

Solution:
We find the derivative first which is

f ′(x) =
(x2 − x + 1)(1)− (x − 1)(2x − 1)

(x2 − x + 1)2
=
−x2 + 2x

(x2 − x + 1)2

To find the critical points, we find where the derivative equal to zero or
does not exist.

f ′(x) = 0

numerator = 0

− x2 + 2x = 0

x = 0 or x = 2

f ′(x) does not exist

denominator = 0

x2 − x + 1 = 0

No Solution
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First Derivative Test

Question: How to find the local min, local max?

Theorem

(First Derivative Test)

1 If f ′(x) changes from positive to negative as x increases, then f has a
local maximum at a.

2 If f ′(x) changes from negative to positive as x increases, then f has a
local minimum at a.
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Example

Find the intervals where the function is increasing/decreasing and find all
local max/min.

f (x) = 2x3 + 3x2 − 36x

Solution:
We find the derivative first which is

f ′(x) = 6x2 + 6x − 36

To find the critical points, we find where the derivative equal to zero or
does not exist.

f ′(x) = 0

numerator = 0

6x2 + 6x − 36 = 0

x = 2 or x = −3

f ′(x) does not exist

denominator = 0

1 = 0

Always False

No Solution
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Number Line

1 f is increasing in (−∞,−3) ∪ (2, ∞).

2 f is decreasing in (−3, 2).

3 f has a local maximum at x = −3 with value f (−3) = 66.

4 f has a local minimum at x = 2 with value f (2) = −44.
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Example

Find the intervals where the function is increasing/decreasing and find all
local max/min.

f (x) = sin x + cos x , x ∈ [0, 2π]

Solution:
We find the derivative first which is

f ′(x) = cos x − sin x

f ′(x) = 0

numerator = 0

sin x − cos x = 0

sin x = cos x

tan x = 1→ x = tan−1 1

x =
π

4
or x =

5π

4

f ′(x) does not exist

denominator = 0

1 = 0

Always False

No Solution
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Number Line

1 f is increasing in (0, π
4 ) ∪ ( 5π

4 , 2π).

2 f is decreasing in (π
4 , 5π

4 ).

3 f has a local maximum at x = π
4 with value f (π

4 ) =
√

2.

4 f has a local minimum at x = 5π
4 with value f ( 5π

4 ) = −
√

2.
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Example

(Old Exam Question) Find the intervals where the function is
increasing/decreasing, find all local max/min, and sketch the graph of the
function.

f (x) = x3 − 12x + 3

Solution:
We find the derivative first which is

f ′(x) = 3x2 − 12

To find the critical points, we find where the derivative equal to zero or
does not exist.

f ′(x) = 0

numerator = 0

3x2 − 12 = 0

x = 2 or x = −2

f ′(x) does not exist

denominator = 0

1 = 0

Always False

No Solution
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Number Line

1 f is increasing in (−∞,−2) ∪ (2, ∞).

2 f is decreasing in (−2, 2).

3 f has a local maximum at x = −2 with value f (−2) = 19.

4 f has a local minimum at x = 2 with value f (2) = −13.
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Exercise

Find the intervals where the function is increasing/decreasing and find all
local max/min.

f (x) =
x2

x − 1

Solution:
We find the derivative first which is

f ′(x) =
(x − 1)(2x)− x2(1)

(x − 1)2
=

x2 − 2x

(x − 1)2

To find the critical points, we find where the derivative equal to zero or
does not exist.

f ′(x) = 0

numerator = 0

x2 − 2x = 0

x = 0 or x = 2

f ′(x) does not exist

denominator = 0

(x − 1)2 = 0

x = 1
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Number Line

1 f is increasing in (−∞, 0) ∪ (2, ∞).

2 f is decreasing in (0, 2).

3 f has a local maximum at x = 0 with value f (0) = 0.

4 f has a local minimum at x = 2 with value f (2) = 4.
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Exercise

Find the intervals where the function is increasing/decreasing and find all
local max/min.

f (x) = sin−1 x

Solution:
We find the derivative first which is

f ′(x) =
1√

1− x2

To find the critical points, we find where the derivative equal to zero or
does not exist.

f ′(x) does not exist

numerator = 0

1 = 0

Always False

No Solution

f ′(x) = 0

denominator = 0√
1− x2 = 0

x = −1 or x = 1
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Number Line

Recall the domain of f (x) = sin−1 x which is [−1, 1].

1 f is increasing in (−1, 1).

2 f has no local maximum nor local minimum.
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Exercise

If f is an increasing function. Show that f −1 is an increasing function.

Solution:
Since f is an increasing function, then f ′ > 0. Now we find the derivative
of f −1 which is (

f −1(y)
)′
=

1

f ′(f −1(y))
= > 0

Dr. Abdulla Eid (University of Bahrain) Extrema 24 / 24


