University of Bahrain College of Science Department of Mathematics Second Semester 2012/2013

Course: MATHS 253

Test 2

Date: 21/05/2013 Time: 8:00-9:00

Name:	
y da da a farant a grant a farant a fa	
ID Number:	Scrial No Section No:

Make sure your exam has 3 different questions and 4 pages including the front page.

Question	Maximum	Marks
	Marks	Obtained
1	p=7	
d)) dia	9	
3	9	
Total	25	

All work should be shown clearly

Question 1: [3+4 marks]

1) Let $A = \{\emptyset, \{1\}, \{1, \{1\}\}\}\}$. For each of the following statements write \mathbb{T} if the statement is true and \mathbb{F} if the statement is false.

```
(a) \{\emptyset\} \subset A ( )

(b) \emptyset \in A ( )

(c) \{1\} \in A \land \{1\} \subset A ( )

(d) \{\{1\}\} \notin P(A) ( )

(e) \emptyset \subset A ( )

(f) \{1, \{1\}\} \in A ( )
```

2) Use the pick-a-point method to prove $(A \cup B) - C \subset (A - C) \cup (B - C)$

<u>Question 2</u>: [(2+3)+4 marks]

1) Letxand y be real numbers. Consider the following statement (*)

$$\forall x, \forall y, (x>0, y>0 \Longrightarrow xy < (x+y)^2)$$

- a) Write the negation of (*)
- b) Prove or disprove (*) (Hint: Expand $(x + y)^2$)

2) For any two nonempty sets B and C prove $A \times B = A \times C \iff A = \emptyset$ or B = C.

Question 3: [5+4 marks]

1) Assume a and b are integers. Prove that if a divides b and c divides d then ac divides bd.

2) Use an algebraic method to prove $(A \cap B) - (A \cap C) = A \cap (B - C)$.