University of Bahrain Department of Mathematics MATHS253: Set Theory Fall 2018 Dr. Abdulla Eid

Homework 10: Proofs involving sets II Do not turn it in, Solution will be presented in the class by you.

Name: _____

- 1. Prove the following statements about the sets
 - 1. In class we have proved that $P(A) \cup P(B) \subset P(A \cup B)$. Show that the equality does not hold.

2. What is $|A \times B|$? (Prove your answer)

3. Let A = {1,2} and B = {2,4}. Find the following
(a) A × B.

(b) $P(A \times B)$.

(c) $|P(A \times B)|$ and $|P(A)| \times |P(B)|$ and compare your answer.

4. Give a counter example to show that $(A \times B)^c = A^c \times B^c$.

5. Prove that $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$.

6. Prove that $(A \cap B) \times C = (A \times C) \cap (B \times C)$.

- 7. consider the intervals A = [2, 5] and B = (0, 4).
 - (a) What is $(A B)^c$ in interval notation?

(b) Draw a picture of $(A - B)^c \times (B - A)$.

(c) For sets *A* and *B*, find a necessary and sufficient conditions for $A \times B = B \times A$. I.e., complete the proposition

 $A \times B = B \times A$ if and only if \cdots

- 8. For each *n*, define $B_n = \{n\} \times \mathbb{R}$.
 - (a) Draw a picture of $B_1 \cup B_2 \cup B_3$

(b) Draw a picture of $C = [0, 4] \times \{-2, 2\}$.

(c) Compute $(B_1 \cup B_2 \cup B_2) \cap C$.

(d) Compute $(B_1 \cap C) \cup (B_2 \cap C) \cup (B_3 \cap C)$.

(e) Compare the two answers above. What do you notice?