University of Bahrain Department of Mathematics MATHS253: Set Theory Fall 201 Dr. Abdulla Eid

Homework 12: Functions, part 1 Due December 20, 2018

Name: _____

1. Determine the domain, codomain, and the range for each of the following functions. Also mention which of these are injective, surjective, or bijective.

(a)
$$f : \{a, b, c, d\} \to \{a, b, c, d\}$$
 by $f(a) = b, f(b) = a, f(c) = c, f(d) = d$.

(b)
$$f : \{a, b, c, d\} \to \{a, b, c, d\}$$
 by $f(a) = b, f(b) = b, f(c) = d, f(d) = c$.

(c)
$$f : \{a, b, c, d\} \to \{a, b, c, d\}$$
 by $f(a) = d, f(b) = b, f(c) = c, f(d) = d$.

- (d) $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = x 1.
- (e) $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3 1$.
- 2. What does it mean for a function to be **not** injective? surjective?

3. Determine whether the following functions are injective, surjective, or bijective. Prove your assertion.

(a)

$$f: \mathbb{R} - \{1\} \to \mathbb{R}$$
$$x \mapsto \frac{5}{1 - x}$$

(b)

$$f: \mathcal{P}(A) \to \mathcal{P}(A)$$
$$X \mapsto A - X$$

4. (a) Find a set *A* such that the function $f : A \ni x \mapsto \sin x \in \mathbb{R}$ is injective.

(b) Find a set *B* such that the function $f : \mathbb{R} \ni x \mapsto \sin x \in B$ is surjective.

5. Let $f : (-\infty, 0] \to \mathbb{R}$ and $g : [0, \infty) \to \mathbb{R}$ defined by

$$f(x) = x^2$$
, $g(x) = \begin{cases} \frac{x}{1-x}, & x < 1\\ 1-x, & x \ge 1 \end{cases}$

Does $g \circ f$ maps $(-\infty, 0]$ onto \mathbb{R} ?

MATHS 253 Homework 12: Functions, part 1, Page 4 of ??

- 6. Let $f : A \to B$ and $g : B \to C$ be two functions.
 - (a) Prove that if f, g are surjective functions, then $g \circ f$ is surjective.

(b) What is the converse of the proposition in Part (a)? Is it true?

(c) Prove that if $g \circ f$ is injective, then f is injective.