University of Bahrain Department of Mathematics MATHS253: Set Theory Fall 2018 Dr. Abdulla Eid

Homework 13: Functions, part 2 Do not hand it in

Name: _____

1. Let $f : A \to B$ be a bijective function. Show that $f^{-1} : B \to A$ is also a bijective function.

2. Define the function

$$f: \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$$
$$x \mapsto \frac{x}{x-1}$$

(a) Prove that *f* is a bijective function.

(b) Find f^{-1} .

(c) Find $f \circ f \circ f$.

3. Let $f : A \to B$ and $g, h : B \to C$. Prove that if f is a bijective function and $g \circ f = h \circ f$, then g = h. Can you conclude that if f is a bijective, then it has a *unique* inverse?

4. Prove that the *identity* function on any set *A* is a bijective. What is the inverse of it?

- 5. Let $\mathcal{A} = \{A_i | i \in I\}$ be a collection of subsets of a set A and $f : A \to B$ be a function. Prove the following:
 - (a) $f^{-1}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} f^{-1}(A_i)$

(b) $f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i)$

(c) $f(\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)$. Give an example to show that the equality does not hold. Moreover, prove that equality holds if *f* is injective.

(d) $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$. Give an example to show that the equality does not hold.