University of Bahrain Department of Mathematics MATHS253: Set Theory Fall 2018 Dr. Abdulla Eid

Homework 3: Predicates and Quantifiers

Name: _

- 1. Let Q(x, y) denote the predicate "*x* is the capital of *y*". What are the truth values of the following:
 - 1. Q(Manama, Bahrain).
 - 2. *Q*(Toronto, Candana).
 - 3. Q(Dubai, UAE).
 - 4. *Q*(New York, USA).
- 2. Let P(x) denote the predicate "x is tall", where x is a basketball player. Express each of the following proposition as an English sentences.
 - (a) $\forall x, P(x)$.
 - (b) $\exists x, P(x)$.
 - (c) $\forall x, \neg P(x)$.
 - (d) $\exists x, \neg P(x)$.

3. Let P(x) be the statement $x = x^2$, where x is an integer. What are the truth values of the following (Why?):

(a) P(0). (b) P(1). (c) P(2).

(a) P(-1). (b) $\exists x, P(x)$. (c) $\forall x, P(x)$.

4. Prove or disprove: There exist integers *m* and *n* such that 2m - 3n = 15.

- 5. State the negations of the following quantified statements:
 - 1. "For every rational number *r*, the number $\frac{1}{r}$ is rational".

2. "There exists a rational number *r* such that $r^2 = 2$ ".

3. "For every two real numbers *x* and *y*, $x^2 + y^2 \ge 0$ ".

4. "There exists natural number *a*, such that for all natural numbers *b*, ab = 1".

5. "For all integers *a* and *b*, if *ab* is even, then *a* is even and *b* is even". (Hint: Use De'Morgan laws and the fact that $\neg(p \rightarrow q) \equiv p \land \neg q$)

6. "There exist an integer *x*, such that *x* is odd and x^2 is even".

7. "If *n* is even, then n^2 is odd".

8. "*x* is an odd whenever x + 1 is even".

6. The notation $\exists !x, P(x)$ denotes the proposition

"There exists a *unique* x such that P(x) is true".

What are the truth values of the following given *x* is an integer.

- (a) $\exists ! x, x > 1$.
- (b) $\exists !x, x^2 = 1.$

- (c) $\exists !x, x + 3 = 2x$.
- (d) $\exists ! x, x = x + 1.$
- (e)* Express the proposition $\exists !x, P(x)$ using the quantifiers \exists, \forall and logical operators only.