# Section 11.5 The Chain Rule

Dr. Abdulla Eid

College of Science

MATHS 104: Mathematics for Business II

# Motivation

Goal: We want to derive rules to find the derivative of composite of two functions f(g(x))

### Example

We want to find (in a general way) the derivative of the functions (Note the inner and the outer functions)

• 
$$f(x) = (3x^2 + 5x + 1)^3 = (3x^2 + 5x + 1)^3$$
  
•  $f(x) = (2x^3 - 8x)^{\frac{-4}{3}} = (2x^3 - 8x)^{\frac{-4}{3}}$   
•  $f(x) = \frac{4}{x^2 + 5} = 4(x^2 + 5)^{-1} = (x^2 + 5)^{\frac{-1}{3}}$ 

# The Chain Rule

#### Theorem

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

 $(f(g(x)))' = derivative of outer (inner) \cdot (derivative of inner)$ 

Find the derivative of each of the following:

• 
$$f(x) = (3x^2 + 5x + 1)^3$$

Solution: We write the inner function in blue and the outer function in red and we apply the chain rule.

(1) 
$$f(x) = (3x^2 + 5x + 1)^3 = (3x^2 + 5x + 1)^3$$

 $f'(x) = \text{derivative of outer (inner)} \cdot (\text{derivative of inner})$  $= 3(3x^2 + 5x + 1)^2 \cdot (6x + 5)$ 

Find the derivative of each of the following: (2)  $f(x) = (2x^3 - 8x)^{\frac{-4}{3}}$ 

Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. (2)  $f(x) = (2x^3 - 8x)^{\frac{-4}{3}} = (2x^3 - 8x)^{\frac{-4}{3}}$ .

> f'(x) =derivative of outer (inner)  $\cdot$  (derivative of inner) -4 (c. 3) -2 (c. 2)

$$=\frac{-4}{3}(2x^3-8x)^{\frac{-7}{3}}\cdot(6x^2-8)$$

Find the derivative of each of the following:

(3) 
$$f(x) = \frac{4}{x^2+5}$$

Solution: We write the inner function in blue and the outer function in red and we apply the chain rule.

(3) 
$$f(x) = \frac{4}{x^2+5} = 4(x^2+5)^{-1} = 4(x^2+5)^{-1}$$

 $f'(x) = \frac{\text{derivative of outer (inner)} \cdot (\text{derivative of inner})}{= -4(x^2 + 5)^{-2} \cdot (2x)}$ 

# General Power Rule

#### Theorem

The general power rule

$$\frac{d}{dx}\left(u\right)^{n}=nu^{n-1}\cdot u'$$

### Example

(Old Exam Question) Find the derivative of each of the following: •  $F(x) = \sqrt[3]{4-5x^6}$ .

Solution: Re-write the function as  $f(x) = (4 - 5x^6)^{\frac{1}{3}}$  and apply the general power rule.

$$f'(x) = \frac{1}{3}(4 - 5x^6)^{-\frac{2}{3}} \cdot (-30x^5)$$

Suppose the  $p = 100 - \sqrt{q^2 + 20}$  is a demand function for a manufacturer's product. Find (a) The rate of change of p with respect to q. (b) The relative rate of change of p with respect to q. (c) Find the marginal revenue function.

Solution: We first re-write the function as  $p = 100 - \sqrt{q^2 + 20} = 100 - (q^2 + 20)^{\frac{1}{2}}$ . (a) The rate of change is

$$f'(x) = \frac{-q}{\sqrt{q^2 + 20}}$$

# Continue

### Example

Suppose the  $p = 100 - \sqrt{q^2 + 20}$  is a demand function for a manufacturer's product. Find (b) The relative rate of change of p with respect to q. (c) Find the marginal revenue function.

Solution: We first re-write the function as  $p = 100 - \sqrt{q^2 + 20} = 100 - (q^2 + 20)^{\frac{1}{2}}$ . (b) The relative rate of change is

$$\frac{p'}{p} = \frac{\frac{-q}{\sqrt{q^2 + 20}}}{100 - \sqrt{q^2 + 20}}$$

# Continue

#### Example

Suppose the  $p = 100 - \sqrt{q^2 + 20}$  is a demand function for a manufacturer's product. Find (c) Find the marginal revenue function.

Solution:

(c) The revenue function is r(q) = qp, hence the marginal derivative is

$$r'(x) = p + qp'$$
  
$$f'(x) = 100 - \sqrt{q^2 + 20} + q \frac{-q}{\sqrt{q^2 + 20}}$$

# Extra Exercises

### Exercise

y = 
$$\sqrt{2x} + \frac{1}{\sqrt{2x}}$$
.
 y =  $\left(\frac{x+1}{x+2}\right)^2$ .
 y =  $(3x+5)^5(2x^2-3x+5)^3$ .
 y =  $\frac{4}{\sqrt{9x^2+1}}$ .

