Section 17.1 Partial Derivative 0.25 Lecture

Dr. Abdulla Eid

College of Science

MATHS 104: Mathematics for Business II

The Multivariable function

Definition

A Multivairable function is a function that takes more than one input. Usually, we write it as f(x, y) or f(x, y, z), etc.

Example

The demand on the cars depends on

- The price of the car.
- ② The price of the gas.
- The price of maintenance and auto parts.

Example

1
$$f(x, y) = x^2 + y^2$$
.
2 $f(x, y) = e^{xy} - y^2 + xy + 7$.
3 $f(x, y) = \ln y + x^2$.
3 $f(x, y, z) = x^7 y z^2 + 3 z^4 y$.

The Partial Derivative

Definition

If z = f(x, y), the **partial derivative with respect to** x is given by

$$f_X(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$$

Similarly, the partial derivative with respect to y is given by

$$fy(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

Procedure to find f_x and f_y :

- To find f_x, treat y as a constant and differentiate in the usual way with respect to x.
- To find f_y, treat x as a constant and differentiate in the usual way with respect to y.

Example

If $f(x, y) = 2x^2 + 3xy$. Find f_x and f_y .

Solution:

$$f_x = 4x + 3y$$
$$f_y = 3x$$

Example

If
$$f(x, y) = e^{xy}$$
. Find f_x and f_y .

Solution:

$$f_x = e^{xy}y$$

 $f_y = e^{xy}x$

Notation: Let z = f(x, y)

- f_x is denoted by $\frac{\partial f}{\partial x}$.
- f_y is denoted by $\frac{\partial f}{\partial y}$.

Example

Let
$$f(x, y) = \frac{x}{y}$$
. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

Solution:

$$\frac{\partial f}{\partial x} = \frac{1}{y}.$$
$$\frac{\partial f}{\partial x} = \frac{-x}{y^2}$$

Example

If $f(x, y, z) = 2x^3y^2 + 2xy^3z + 4z^2$. Find f_x , f_y and f_z .

Solution:

$$f_x = 6x^2y^2 + 2y^3z$$

$$f_y = 4x^3y + 6xy^2z$$

$$f_z = 2xy^3 + 8z$$