Section 3.8 Derivative of the inverse function and logarithms 3 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Topics

- **1** Inverse Functions (1 lecture).
- 2 Logarithms.
- Orivative of the inverse function (1 lecture).
- Logarithmic differentiation (1 lecture).

1 - Inverse functions (pre-calculus)

Definition

Let f be a function. The **inverse** function, denoted by f^{-1} of f is a *new* function such that

$$f(\underline{f^{-1}}(x)) = \text{ and } \underline{f^{-1}}(\underline{f}(x)) =$$

outer inner

outer inner

(The function and its inverse cancel each other).

(a) Let f(x) = x + 5, then $f^{-1}(x) = x - 5$ (we will see how to find the inverse shortly). Note that:

•
$$f(f^{-1}(x)) = f(x-5) =$$

• $f^{-1}(f(x)) = f^{-1}(x+5) =$

(b) Let
$$f(x) = x^2 (x \ge 0)$$
, then $f^{-1}(x) = \sqrt{x}$ because:
• $f(f^{-1}(x)) = f(\sqrt{x}) =$
• $f^{-1}(f(x)) = f^{-1}(x^2) =$

Question: Does every function have an inverse? How to tell when afunction has an inverse?Answer:, we use theif we have the graph of thefunction.

To find the inverse function

To find the inverse function

Algebraically

Geometrically

Step 1: Write
$$y = f(x)$$
.

Step 2: Switch x and y to get x = f(y).

Step 3: Solve for y, i.e., isolate y alone to get $y = f^{-1}(x)$.

Step 1: Reflect the graph of y = f(x) on the *x*-axis.

Step 2: rotate the resulting graph by 90° counterclockwise to get the graph of $f^{-1}(x)$.

Find the inverse of g(x) = 5x - 3.

Solution:

Step 1: Write $y = g(x) \rightarrow$

Step 2: Exchange x and y in step $1 \rightarrow$.

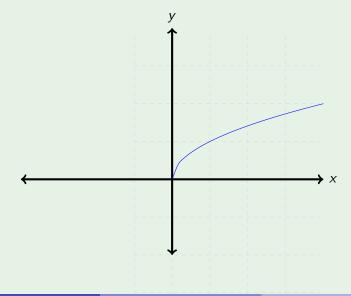
Step 3: Solve the equation in step 1 for y

Hence we have

$$g^{-1}(x) =$$

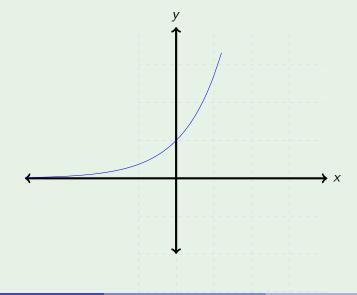
Exercise

Find the inverse function of

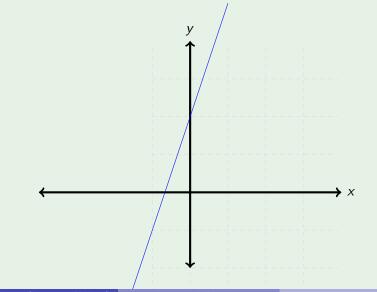

•
$$f(x) = 3x + 2$$
.

2
$$f(x) = x^2 - 1(x > 0)$$
.

$$f(x) = \frac{1}{x}.$$


$$\bullet f(x) = \sqrt{x}.$$

Find the graph of the inverse function of the following functions:



Dr. Abdulla Eid (University of Bahrain)

Find the graph of the inverse function of the following functions:

Find the graph of the inverse function of the following functions:

Dr. Abdulla Eid (University of Bahrain)

Inverse Trigonometric Functions

Example

Let $y = f(x) = \sin x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in$ and we write it as

$$f^{-1}(x) = =$$

Inverse Trigonometric Functions

Example

Let $y = f(x) = \cos x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in$ and we write it as

$$f^{-1}(x) = =$$

Inverse Trigonometric Functions

Example

Let $y = f(x) = \tan x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in$ and we write it as

$$f^{-1}(x) = =$$

Exercise

Find the domain, range, and the graph of inverse of the following functions:

Dr. Apquilis