Section 3.8 Derivative of the inverse function and logarithms 3 Lecture

Dr. Abdulla Eid

College of Science

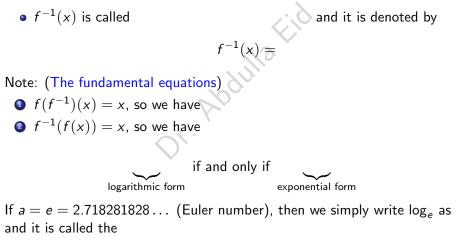
MATHS 101: Calculus I

Topics

- **1** Inverse Functions (1 lecture).
- 2 Logarithms.
- Orivative of the inverse function (1 lecture).
- Logarithmic differentiation (1 lecture).

2- Logarithmic Function

Consider the exponential function $f(x) = a^x$. Question: Does f(x) has an inverse? Why? Answer:



Properties of Logarithms

- $0 \ \log_a(m \cdot n) = .$
- $\log_a(\frac{m}{n}) = .$

- (change of bases) $\log_a m = 1$

Exercise

Use the fundamental equations to prove these six properties of the logarithms.

(Expansion) Write the following expression as sum or difference of logarithms

In
$$(\frac{x}{wz^2}) =$$
In $(\frac{x+1}{x+5})^4 =$
In $(\frac{\sqrt{x}}{(x^2)(x+3)^4})$

Exercise

Write each of the following expression as sum or difference of logarithms: (1) $\log_3(\frac{5\cdot7}{4})$ (2) $\log_2(\frac{x^5}{y^2})$ (3) $\log(\frac{x^2z}{wy^2})$ (4) $\ln\sqrt{\frac{x+1}{x-2}}$.

Write each of the following logarithm in terms of natural logarithm.

- **1** $\log_3 x =$
- log₆ 7 =
- $\log_2 y =$

The derivative of the inverse function

Strategy: Goal: We want to find $\frac{d}{dx}(f^{-1}(x))$. Write $y = f^{-1}(x)$, we want to find y'

Geometric Interpretation *

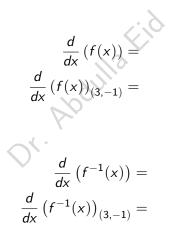
Note that

$$\frac{d}{dx}\left(f^{-1}(x)\right) = \frac{1}{f'(f^{-1}(x))}$$

so the slope of f^{-1} is reciprocal to the slope of f. Geometrically,

Let $f(x) = x^3 - 3x^2 - 1$. Find $\frac{d}{dx}(f(x))$ and $\frac{d}{dx}(f^{-1}(x))$ at the point (3, -1)

Solution:



Derivative of In

Example

Find $\frac{d}{dx}(\ln x)$.

Solution:

 $y = \ln x$

Exercise

Find y' if $y = \log_a x$. (Hint: Use the change of base formula to change it to ln)

Recall

The Chain Rule

Theorem

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

 $(f(g(x)))' = derivative of outer(inner) \cdot (derivative of inner)$

Find y' for each of the following:

a
$$f(x) = \ln x^2 = \ln x^2 \rightarrow y' =$$
b $f(x) = \ln(2x+3) = \ln(2x+3) \rightarrow y' =$
a $f(x) = x \ln x \rightarrow y' =$
b $f(x) = \ln(\ln x) = \ln(\ln x) \rightarrow y' =$
b $f(x) = \ln(\sin x) = \ln(\sin x) \rightarrow y' =$
c $f(x) = \sin(\ln x) = \sin(\ln x) \rightarrow y' =$
c $f(x) = \sin(\ln x) = \sin(\ln x) \rightarrow y' =$

Derivative using the properties of Logarithms

Example

Find the derivative of

• $f(x) = \ln x^{2017}$

Solution: First we re-write the function in terms using the properties of the ln to get a simplified function:

$$f(x) =$$

Hence

f'(x) =

Exercise

Using the chain rule, find the derivative of the function of the previous example without using the properties of the ln, i.e., find f'(x) for

 $f(x) = \ln(x^{2017})$

Or. Applulla Elic

Derivative using the properties of Logarithms

Example

Find the derivative of

•
$$f(x) = \ln \sqrt[3]{\frac{x^3 - 1}{x^3 + 1}}$$

Solution: First we re-write the function in terms using the properties of the ln to get a simplified function:

$$f(x) = \ln\left(\frac{x^3 - 1}{x^3 + 1}\right)^{\frac{1}{3}}$$

Continue...

We write the inner function in blue and the outer function in red and we apply the chain rule.

derivative of outer (inner) \cdot (derivative of inner)

f(x) = f'(x) =

Exercise

Using the chain rule, find the derivative of the function of the previous example without using the properties of the ln, i.e., find f'(x) for

$$f(x) = \ln\left(\sqrt[3]{\frac{x^3 - 1}{x^3 + 1}}\right)$$

