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Definition of a limit

Example 1
How does the function
Flx) = =L
Cox—1
behave at x = 17
Solution: )
f(1) = 11 __11 = g undefined!

Hence, we cannot substitute directly with x = 1, so instead we check
values that are very much close to x = 1 and we check the corresponding

values of f(x).

x [ 0.9]099 09999 |1 |1.00001 |1.001|1.01 |
H
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Continue...

So we have seen that as x approaches 1, f(x) approaches 2, we write

lim f(x) =2

x—1
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Exercise 2
Using the method of the previous example (the table) find the following
limits:

Q lim,_,5x.

Q lim,_,x.

Q limy_,7.

Q lim,_ k.

Q lim,_,o f(x), where

f(X):{o, x <0

1, x>0

Question: In order to find the limit of a function, do we need to do the
table method every time?

Dr. Abdulla Eid (University of Bahrain) Limits 4/26



To find the limit limy_, f(x), we have

@ Substitute directly by x = a in f(x). If you get a real number, then
that is the limit.

@ If you get undefined values such as g, we use algebraic method to
clear any problem.
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Zero denominator of a rational function

A - Eliminating zero denominator by canceling common factor in the
numerator and denominator (g form).

Example 3
Find

. x2-25
lim =—==
x—=5 x—5

Solution: Direct substitution gives

2 _
> 25 S 9 undefined!
5—-5 0

So we factor both the denominator and numerator to cancel the common
zero.

_ lim (x —5)(x+5)

lim
x=5 x—5 x5  (x—5)
lim (x + 5)
x—5
=545=10
Dr. Abdulla Eid (University of Bahrain)

Limits 6/ 26



Exercise 4

Find

x2—2x+1
x—1 x—1
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Example 5
Find

Solution: Direct substitution gives

2 _
002—_3(90) = g undefined!
So we factor both the denominator and numerator to cancel the common
zero.

lim —X2_3X = lim —X(X_3)
x—3 x2—90 x—3 (X—3)(X+3)
= lim x

x=3x+3
3 1
6 2
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Exercise 6
Find
- 5y3 + 8y?
y—0 3_)/4 — 16y2

Solution: Direct substitution gives

5(0)°+8(0)2 0

T re = o defined!
3004 —16(0) 0 undefine

So we factor both the denominator and numerator to cancel the common
zero.

5y3 +8y? . y?(5y +8)

}!ano 3y* —16y2  y—0 y2(3y2 — 16)
_ jim Y F8
y—0 3y2 — 16
5(0) +8 8 -1

T 3(002-16 -16 2
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Exercise 7

Find
. x2—3x+4
lim ———
x—=1x2 —6x+7
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Example 8

Find
O 2x243x+1
lim ————
x——-1 x2—2x—13

Solution: Direct substitution gives

20243041 0
(02=2(0)—3 0 undefined!

So we factor both the denominator and numerator to cancel the common
zero.

i 2x*+3x+1 i 2(x+3)(x+1)
x=-1 x2=2x—3  x>-1 (x—3)(x+1)
o 2(x+1)
= lim
x—=-1 x—23
_2(-3) 1
-4 4
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Exercise 9

Find
x3—8
x—2 3x2 — x — 10
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Example 10

Find
4x> — 4
lim ———
x—15x2 —5
Solution: Direct substitution gives
4(0°—4 0 .
SEO;TS =0 undefined!

So we factor both the denominator and numerator to cancel the common
zero.
4x° — 4 4x°>-1)

i@l 5x2—5 )!;1 5(x2—1)

dx—1)(x*+x3+ x>+ x+1)

= |lim

x—1 5(x —1)(x+1)
. 4x*+x3+x3+x+1)
o x—1 5(X + 1)

20
= —_-— 2

10
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Example 11
Find

Solution: Direct substitution gives
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Exercise 12
Find
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Limits



Conjugate and multiply by 1

B - Eliminating zero denominator by multiplying with the conjugate.

Example 13
Find
lim u

x—=9 x—90

Solution: Direct substitution gives

Vo-3 0
9—9 0

undefined!

Since there is a square root and we cannot factor anything, we multiply
both the numerator and denominator with the conjugate of the numerator

(the one that contains the square root).
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Continue...

Vx—3 (Vx —3) (Vx+3)

T x—0 AT (x=0) (Vx13)
-l S
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Exercise 14

Find
. Xe—151—12
lim
x—9 x—9
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Conjugate and multiply by 1

Example 15
Find
lim YX T2 Rl

x—7 X2 — 49

Solution: Direct substitution gives

V9—-3 0
X— fined!
29 — 19 0 undefined

Since there is a square root and we cannot factor anything, we multiply
both the numerator and denominator with the conjugate of the numerator
(the one that contains the square root).
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Continue...

VX+2-3 L (Vx+2-3) (VX £2+43)

lim Y222 o
XT? x2 — 49 x—>7 (x2 — 49) (vx +2+43)
_ x+2—-9
Ly (x=T)(x+7)(Vx+2+3)
= lim (x—7)
FGENG DV
T (x + 7)(\/x +2+3)
1
T84
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Exercise 16

Find
. 4

X —
x—)4\/_—2
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Properties of Limits

Let limy_,f(x) = L and limy_,g(x) = K.

Q limy_;c=c.

Q limy_,x" = a".

(s ”mx—>a[ (X> ( )] = lim,_,,f (X) + |imx—>ag(x) =

Q limy, [f(x) - g(x)] = limya F(x) - limesag(x) =L- K.

Q limy_, [cf(x)] = climy_, f(x) =cL.

O limys [[53] = gy =k ifK £0

Q@ lim,,, /f(x) = /lim,,f(x) =V/L. If nis even, then L must be

non—negative.
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Summary: These properties are telling us we can substitute directly with
the value of a if there no problem.

i (X3
x——3 X2—9

Exercise 17
Find
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The Sandwich Theorem (Squeeze theorem)

Theorem 18

Suppose g(x) < f(x) < h(x), ie., f is squeezed between g and h.
Suppose also that

im0 = Jim hl) =1
Then we must have
lim f(x) =L

X—a
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Example 19

Find limy_o u(x) if 1 — XTQ <ulx) <14+ %

-
Solution:
2 2
1—%gu(x)§1+%
X2 X2
R S < | x<
xlinol 4 _llnou(x)—linol—i_ 2

1<limu(x) <1
x—0

li =1
XT;]O U(X)
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Exercise 20

Find limy_o f(x) if v/5 —2x2 < f(x)

< /5 —x2.
Solution:
V5 —2x? < f(x) < /5—x?
V5 — x2

lim v/5—2x2 < lim f(x) < lim
x—0 x—0 x—0
V5 < lim £ (x) < NG
X—
lim f(x) = /5

x—0
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